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Abstract

This paper reports on the application of the operational complexity index [Frizelle, G., Woodcock, E., 1995. Measuring
complexity as an aid to developing operational complexity. International Journal of Operations and Production
Management 15(5), 26-39]. The aim is to address what is the relationship between costs and the complexity index. The
investigation carried out measurements on two types of supplier—customer systems in the UK. One is make-to-stock with
low product variety but high volume, while the second is make-to-order with high variety but low volume. The research
found some evidence that inventory costs are associated with operational complexity. Moreover, while the index is generic
to both case studies, there seemed to be a direct link between the index value and cost only in the make-to-stock case.

© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Manufacturing industry is suffering from an
increasing requirement for more flexibility and
agility to deal with the variety and uncertainty in
the markets it serves. The effects of uncertainty and
unpredictability are also manifest at the interfaces
between customers and suppliers, i.e. along the
supply chain. In order to adapt to uncertain and
unpredictable changes from customers, manufac-
turers and suppliers need to be flexible in the
product range they offer and in the volumes they
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supply. Lee (2004) studied top-performing supply
chains and identified the keys to success to be agility
to deal with sudden changes, adaptability over time
as market structures and strategies evolve, and
alignment of all the firms in the supply network to
optimise their interests. Specifically, many manu-
facturing managers view product range flexibility
as a core competence for competitive success
(De Meyer et al., 1989).

A few researchers found the level of flexibility to
influence the choice of one or more performance
measures, although others found the contrary.
Banker et al. (1990) observed that product complex-
ity (defined as number of moving parts in the
mould) had a significant impact on the cost of
supervision, quality control, and tool maintenance.
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Kekre and Srinivasan (1990) reported that signifi-
cant increases in market share and company profit-
ability were associated with broadening product
variety, but the widely believed association of
production costs to variety were not supported by
empirical results. MacDuffie et al. (1996) studied 70
assembly plants and concluded that the impact of
product variety on performance is much less than is
generally assumed. In contrast, it was found
product complexity to have a persistent impact on
productivity. Guimaraes et al. (1999) utilised replies
to a questionnaire sent to 500 plant managers to test
the impact of manufacturing system complexity on
performance. They defined manufacturing system
complexity as comprising system complexity, op-
erator task complexity, operator behaviour com-
plexity, supervisory task complexity, training
effectiveness, and man—machine interface effective-
ness. They measured nine variables such as pro-
ductivity, turnover, manufacturing costs and
quality. The survey showed man/machine interfaces
to be a significant contribution in reducing the
negative effect of systems complexity. Randall and
Ulrich (2001) investigated the bicycle industry and
found that some types of product variety incur high
investment costs and high logistic costs in order to
achieve the required flexibility. The authors refer to
these as ‘“‘market mediation costs”, because of
uncertainty of demand. Their empirical results
suggest that the firms that match their supply chain
structure to the product variety type outperform the
firms that fail to do so. Chandra et al. (2005)
modelled a major automotive company in terms of
capacity planning, flexibility, and part commonal-
ity. The experimental results showed that increasing
level of flexibility and part commonality yiclded
improvements in production profitability.
Although flexibility or agility is widely accepted
as a core competence in coping with variety and
uncertainty, being flexible is not, by itself, the whole
answer to coping with the variety and uncertainty
inherent in a supply chain. It was observed that
40% of flexibility-improvement projects were un-
successful due to “failure to identify precisely what
kind of manufacturing flexibility was needed, how
to measure it, or which factors most affected it”
(Upton, 1995, 1997), or “what level the and type of
flexibility do we require” (Hill, 1991). Jordan and
Graves (1995) found that offering limited flexibility
yielded most of the benefits to be had from being
flexible. In order to achieve this, a measure of how
well a supplier adapts to changes of demand is

needed, Simply being flexible in an unspecific way is
insufficient. Adaptability is also achieved through
implementing appropriate planning and scheduling
procedures.

Failure of production planning and scheduling to
cope with customers’ requirements for product and
volume variety also exposes the limitations of
undifferentiated flexibility. Lauff and Werner
(2004) addressed complexity of scheduling problems
in dealing with variety and uncertainty. Uncertainty
comes not only from the customer, but also from
the shop floor and suppliers. Shop floor distur-
bances make scheduling very difficult in practice,
exacerbated by the dynamic nature of the environ-
ment. The disturbances and the complexity of
scheduling cause deviations from a plan that is
often overoptimistic (Stoop and Wiers, 1996).

Three points emerge from this literature. First
there is a need for a clearer understanding of the
nature of the complexity created by the performance
of a plant or supply chain. Are all forms of
complexity equivalent or does one need to be more
specific? For example what, if anything, do system
complexity, operator task complexity, operator
behaviour complexity, and supervisory task com-
plexity have in common (Guimaraes et al., 1999)? Is
it possible to identify a “footprint of complexity’?
Second if there is no obvious common mechanism,
are there common consequences that arise from the
presence of these forms of complexity? Finally, if
the answer to either is ““yes”, does this lead to the
development of a suitable measure?

However, so far there is no satisfactory and
generally admitted definition of complexity (Perona
and Miragliotta, 2004). In manufacturing and
supply chain management, complexity implies
number of elements or subsystems, degree of
connectivity and interaction among the elements,
unpredictability, uncertainty, and variety in pro-
ducts and in system states. Some researchers applied
the metrics approach to measure individual aspects
of a complex system (Perona and Miragliotta, 2004;
Lauff and Werner, 2004; Blecker et al., 2005). For
instance, Perona and Miragliotta (2004) proposed
three indices, such as a supply relationship index to
measure type and stability of connectivity, the
number of components and products to measure
product variety, and the annual quantity production
orders to measure information and planning com-
plexity. Another approach to answering above
questions is to take an information-theoretic
view. Frizelle, Woodcock and Suhov (Frizelle and
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Woodcock, 1995; Frizelle and Suhov, 2001) defined
an information-theoretic measure to quantify what
they referred to as “structural complexity”” and
“operational complexity” in manufacturing sys-
tems. The structural complexity index measures
complexity of the system configuration, while the
operational complexity index measures operational
(dynamical) aspects when the system is running.
Based upon the theory, methodologies for analys-
ing the operational complexity were developed
(Calinescu et al., 2000 and Sivadasan et al., 2002;
Sivadasan et al., 2002).

It is widely believed that operational costs
increase as the system becomes more complex. The
literature cited earlier highlighted possible mechan-
isms that may contribute. George and Wilson (2004)
even regarded complexity as ‘“‘the silent killer of
profits and growth”. Frizelle (1998) proposed a
linkage between sources of cost and operational
complexity. However, while the links he suggested
appear plausible, no formal justification was given.
Moreover, the emphasis on inventory queues
suggest that the linkage is, at best, only partial.
For example, it is difficult to see a direct link
between supervisory task complexity and finished
goods and/or raw material stocks. Further, even
where inventories are involved, one intuitively
expects very agile companies to generate less
inventory in their chains than their more leaden
footed competitors.

This paper therefore sets out to investigate the
relation between operational complexity and supply
chain costs. It will address two related questions.
The first is what cost generators, if any, can be
associated with operational complexity. The second
is whether a relationship can be adduced between
the values taken by a complexity index (see below)
and specific cost generators.

The remainder of the paper is structured in four
sections. The first section looks at a theoretical
model that not only suggests categories of cost that
might be associated with different forms of com-
plexity but also gives a rationale as to why there
could be a link between the index and cost. The
second section covers the methodology and falls
into two broad subsections. The first describes
the gathering of data from the field in two major
UK manufacturing companies and their suppliers.
The second subsection explains the role of simula-
tion in the exercise. Section three discusses the
results and conclusions are drawn in the concluding
section.

2. Theoretical background

There are three parts to the theoretical back-
ground. The first two recount the basic ideas that
led to the development of an index and how the
index relates to queues. The third develops the link
to costs and shows why there is reason to believe
that increasing index values may be related to
increasing costs.

2.1. Complexity indices

Complexity index measures (Frizelle and
Woodcock, 1995; Frizelle and Suhov, 2001) were
developed originally to measure complexity for a
manufacturing system, which can be viewed as
comprising two parts: a structural and an opera-
tional part. The structural part is relatively stable
and reflects the structure of the system. The
operational part mirrors aspects of the dynamics
of the system. In particular, it reveals how the
system deals with disturbances during operation.

Structural complexity is thus defined as the
expected amount of information (entropy) neces-
sary to describe the state of a planned system. In a
manufacturing system, the data required for calcu-
lating the structural complexity can be obtained
from the production schedule.

Operational complexity is defined as the expec-
ted amount of information necessary to describe
the state of the system’s deviation from the
schedule. The calculation involves measure-
ment of the difference between actual performance
of the system and the expected performance
predicted in the schedule. The operational complex-
ity index measure hence reflects variety and
uncertainty coming from the customer and the
supplier, goodness of the planning and schedul-
ing adaptable to the uncertainty, and level of
flexibility of the process which restricts the planning
or scheduling in dealing with the variety and
uncertainty.

These ideas can be extended to a supply chain
system with a single supplier supplying a single
product to a single customer. In such a system,
structural complexity can be determined either by
reference to the schedules involved or through
observing the profiles of policy stock. Opera-
tional complexity appears either as the variation
from schedule actually observed, or as the vari-
ation of the policy stock profile from what was
predicted.
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2.2. A queuing model

In a supply chain, the product flow across a
supplier—customer interface can be viewed as an
input—output system, where the arrivals are Poisson
and the service rate is negative exponential. The
entropy of the queue H(rm) can be expressed as
(Frizelle and Suhov, 2001)

H(m) = —Llog L+ (L + 1)log(L + 1), ()

where L is the mean length of the queue.

It can be shown that the derivative of the entropy
to the mean length of the queue is positive for any
L>0. Therefore, it can be concluded that the
entropy, i.e. the operational complexity, is mono-
tone increasing with the mean length of the queue. If
the queue length represents the stock of inventory,
the average stock thus rises as the complexity (which
is indicated by the fluctuation of the stock)
increases, as illustrated in Fig. 1. As a higher level
of stock implies higher cost, the operational
complexity is thus associated with cost.

There is one other useful consequence of the
monotonicity of operational complexity with queue
length. It means that for any resource in the chain
where a queue has accumulated, there is a unique
value of the entropy. This fact is used as the basis
for developing simulations. It means that if the
entropy calculated for the queues in the simulation
equals the values determined by direct observation
then, in a statistical sense, the behaviour of the
simulated queues should match those of the
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observed queues. Of course, this will not hold true
if the dynamics of queue formation are not those of
the real system.

2.3. Costs of complexity

The costs of complexity are the costs involved in
running a system, analysed in terms of its complex-
ity. As with the complexity index, the costs of
complexity can be divided into two categories, i.e.
costs of structural complexity and costs of opera-
tional complexity.

For a supply chain, the structural complexity
costs include all costs resulting from the production
and shipping of a single item in planned circum-
stances. These might be thought of as costs
emanating from the existence of tolerated states—
what might be called tolerated costs (although we
shall not use that terminology). They include the
capital and revenue costs of the plant, equipment
and people needed to make, store and ship the
product, plus overheads (Frizelle, 1998). The
revenue costs are typically found from the operating
budgets of the supplier and the customer.

The costs of structural complexity can therefore
be calculated as the expected costs for scheduled
production over a period of time. In the study
described in the following section (Case 2), the
supplier supplied more than one product to the
customer. Therefore, following the definition above,
a network of chains was involved. Suppose the
network comprises 7 chains. Then we may write the

Average
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Fig.
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1. An illustration of the relation between fluctuation and average stock.
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structural cost as

n m; S

CS = Zzzpljkcl/k+h (2)

where 7 is the number of product types (chains), m;
the number of independent resources on which a
process/operation is required by product i, s; the
number of scheduled states of product i on resource
7, pgk the probability of product i on resource j being
in scheduled state k and, Zl—lpyk =1, for any
] — 1’ 2’ e
turing cost of product i on resource j being in
scheduled state k,' / is the transport cost, i, j, and k
are indices of product, resource, and scheduled
state, respectively.

The sum in the first item on the left of the
equation reflects the expected conversion costs, i.e.
the conversion costs in the budget. On the other
hand, the conversion costs Cgk can be categorised as
variable costs and fixed costs. That is,

S S
Cor = iy /e 3)

my; i=1,2,---,n, Cijk i1s the manufac-

where ¢ is the quantity of product i at resource j

being in scheduled state £, cl . the cost of processing
a unit of product 7 at resource j being in scheduled
state k, and f gk the fixed cost of product i at
resource j in scheduled state k.

As fixed costs, f j normally do not change with
the states and note that S i = 1, we have,

=33 <Zp,jkq,,kc,,k +f ,]) +h, @

i=1 j=

The following example demonstrates the states
and the probabilities in the equation above. Since
costs accumulate across resources and product mix,
to make it simple, it is assumed that one product is
manufactured at a machine. The scheduled daily
production rates vary between 6 units and 9 units,
which represent 4 states, with the percentages
(probabilities) of 20%, 40%, 30%, and 10%,
respectively. The direct variable cost for a unit
product is £200 and the machine needs one set-up
each day, which involves a fixed cost of £300. The
company works 250 days per annum. It is hence
expected that in a year the production rates are
6 units per day for 50 days, 7 units for 100 days,

'As one is usually only interested in cost savings resulting from
reduced structural complexity, this term can often be simplified to
include only the items that are going to change, such as inventory
levels. The comment equally applies to the terms / and f .

8 units for 75 days, and 9 units for 25 days.
Therefore, the total annual cost can be calculated to
be £440,000. This can be considered as an approx-
imation to the structural complexity cost, that is the
cost that is tolerated, within the plant, in order to
maintain the structure of the chain. Such figures are
typically found in a budget.

The costs of operational complexity include the
extra costs caused by variation of the actual state
from the predicted state. These costs can also be
classified into two categories: capital items and
revenue items. The capital items include the fixed
costs of holding excess storage, excess plant and
equipment, additional IT, etc. They are difficult to
estimate. On the other hand, the revenue costs are
very real. They include excess inventories, labour
charges, rectification costs, revenue loss, warranty
payments, excess overhead, etc. (Frizelle, 1998).
Again the revenue element of the operational
complexity costs correspond to the “actual’”’ column
of a cost control statement. The variational element,
the difference between what is expected and what
has been achieved, appears in the variances reports.

As we are only interested how the cost changes
between different scenarios, we can ignore the
budgeted (predicted) element of the cost, and
consider only the cost at every possible state that
deviates from the scheduled states or deviates from
the tolerated range of states when computing the
operational complexity cost (referred to as a non-
tolerated state below). This greatly simplifies
matters. For example, as the transhipment costs
are unaltered between scenarios, they are not
included. It can be expressed as an equation as
follows:

n m;  Nsjj

Cp = Zzzpt/kcuk’ )

where 7 is the number of product types (chains); m;
the number of independent resources; ng; the
number of non-tolerated states; pé’k the probability
of product i at resource j being in non-tolerated
state k; Cgk the cost of product i at resource j being
in non-tolerated state k; i, j, and k are indices of
product, resource, and non-tolerated state, respec-
tively.

Similarly, it can also be categorised as variable
costs and fixed costs:

n m;  Nsjj

Cp = Z Z Z(pfkqé)kcé)k +f§k)’ (6)

i=1 j=1 k=1
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where qfl?k is the quantity deviating from scheduled
quantity gz of product i at resource j being in non-
tolerated state k, cé.)k the cost of processing per
volume of product i at resource j being in non-
tolerated state k, and f° gk the fixed cost of product i
at resource j in non-tolerated state k, e.g. a fixed cost
for backlog when stock-out happens.

Assume that the scenario in the forementioned
example is in a JIT environment, without stock. The
unpredictable daily demand varies randomly be-
tween 6 and 9 units with the same probability
distribution as the production schedule. However,
in the case of scheduled daily production of 6 units,
the company may take the risk of loss or backlog of
sales. In the case of scheduled daily production of 9
units, on the other hand, the company may have
unsold stock. There will hence be three non-
tolerated states for unsold stock and three for loss
of business (queuing effects, which involve more
states, can be included in simulations). It is assumed
in the example that shortages incur losses of £50 per
unit product and a one-off cost of £30 is charged for
relieving a unit of stock (thus for simplification
purposes there is no queuing effect). It is also
assumed that there is no fixed cost for shortage or
excess stocking. The annual costs due to the
variational element of the operational complexity
would therefore be £22,300.

In this exercise, we are predominantly interested
in the costs that may be expected to change over the
time span of a schedule and reflect some aspect of
operational complexity. In line with our definition
of a supply chain, we consider first the cost of
manufacture a single product line, at the supplier
plus the cost of its transportation. We deliberately
ignore the cost of raw materials either at the
customer or at the supplier, because that encom-
passes a range of other costs, including costs to the
supplier of his upstream chain. Specifically, we take
the cost of manufacture as a conversion cost i.e. the
product cost less its raw material cost. This will
therefore include operational overheads. We use this
to value finished goods inventory. To that will be
added a single overhead representing transport
cost as this tends to be a fixed unit cost between a
specific supplier and customer, in line with our
definition of a supply chain. This latter will be used
to value raw material inventory at the customer’s
site. Menkhorst (2003) considers that inventory
carrying costs alone account for up to 39% of
running a chain followed by transport (12%) and
warehousing (8%).

3. Methodology

The exercise was carried out in two distinct
stages. Ideally, all data should be collected from the
field to populate the operational complexity and
cost equations. However, it is apparent that this
would only furnish one data point unless the
parameters governing the behaviour of the chains
changed radically. Since such parameters include
the structure of the chains, the products involved,
the ways of doing business and so on, radical
changes during the period of observation were
unlikely to happen. To get around the problem, a
second stage was initiated where alternative scenar-
ios could be generated synthetically by simulation.
The two stages will now be described in some detail.

3.1. Stage one: data collection from the field—the
industrial studies

In order to calculate the complexity indices, two
categories of data were required: planned states and
unplanned states. The first category of data was
obtained from plans, schedules and order patterns.
The second is calculated by difference from the
actual (observed) production or inventory levels.
The probabilities, which are used for calculating the
complexity indices and the costs, are estimated by
the data collected. In practice, most recent data can
be used for the purpose. It is hence assumed that
the statistical data, i.e. probabilities, are relatively
stable.

Two supply chains were studied. One chain
involves the supplier making to stock and the
customer holding a relatively small raw material
stock as a buffer. The chain is characterised as
having low product variety but high volume. The
second chain involves making to order with high
variety but low volume. In this case, the variety
precludes the supplier from being able to make to
stock. It allows one to see if a link between
operational complexity and supply chain cost exists
in two very different types of chain. In each of the
two chains, two companies were involved, referred
to as the supplier and the customer. So, for example,
there were no intermediate stages such as a
distribution centre. Moreover, the geographical
distances in each case were relatively short so that
the effects of transport could be ignored.

The stage one comprised two phases: familiarisa-
tion and data collection. The first phase builds the
understanding of people, process, and plant by
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interviews and shop floor visits. In this phase, the
key processes and flows are mapped. The second
phase records observations on orders, schedules,
production, inventories, and deliveries, supplemen-
ted by archival data. Teams of researchers worked
simultaneously at the supplier and at the customer
sites over a 3-week period. Each team typically
consisted of three people. The findings were checked
by interviews. A full discussion of the approach
taken can be found in Sivadasan et al. (2002).

The first case study (Case 1) was carried out at a
Unilever detergent plant in the fast-moving con-
sumer goods business. The supply chain comprised
a vendor supplying plastic bottles to a manufacturer
of household chemicals. The manufacturer (the
customer) scheduled his filling lines with a weekly
rolling plan (referred to as Initial Plan in Table I in
the next subsection) using an MRP system, which
took its demand from a downstream distribution
warchouse that placed daily orders. A specified
safety stock is considered in the production plan.
The plan is rescheduled according to daily demands
under the limitation of production capacity. In this
case, 9 weeks data of customer requests, plans in
different stages, scheduled production, actual pro-
duction, scheduled delivery, actual delivery, and
costs data were collected. The production comprises
6 lines for a range of more than 50 products
including different bottle sizes. The cost of opera-
tional complexity was identified to be the operating
cost, consisting mainly of the costs for inventory
stocking and shortage.

The second case study (Case 2) came from one of
the suppliers of BAE Systems. Here the vendor
supplied the customer with printed circuit boards.
The chain was characterised by the fact that the

Table 1

customer rarely ordered the same board twice. This
meant that the supplier had both to design and then
to manufacture the board. This prevented the
supplier from holding stock, although in practice
there was a residual finished goods stock as he had
to make in excess of the order quantities to allow for
shortages and wastage. The chain was further
defined by frequent small deliveries direct to the
customer. In this case, 6 months data of customer
orders, initial production, actual production, and
delivery were collected. The major cost generators
for operational complexity were excess production
and scrap due to defect.

3.2. Stage two. generating additional scenarios
through simulation

Stage two can be divided into distinct phases:
modelling the system, “tuning” and validating the
model, and carrying out ‘“‘what if”” analysis in
different scenarios.

The skeleton structure of the simulation models
consists of three submodels, an operational model, a
scheduling model, and a control model, representing
the three basic functions in the supply chain
operation. First, the customer sends his require-
ments to the supplier. This is simulated in the
control model, using Visual Basic for Applications
(VBA). Then the supplier schedules his manufactur-
ing operation, simulated in the scheduling model
using Microsoft Excel. Finally, the product is
manufactured, simulated in the operational model
by Arena software. The VBA model controls the
production in Arena based on the requirements and
provides a bridge to link Arena and Excel for data
transfer. Given the very different nature of the two

Comparison between the daily volumes of real and simulated systems in Case 1

Initial plan Actual delivery Production Stock
Mean Standard  Mean Standard  Mean Standard  Mean Standard
deviation deviation deviation deviation

Real system 33.3833 41.8095 24.5407 37.5324 24.4719 25.5347 96.9174 59.0126
Simulated system  33.1713 (3.40) 43.5870 24.4983 (4.43) 37.1626 24.2763 (4.24) 21.7805 93.8087 (23.61)  54.3574
Difference —0.2120 1.7775 —0.0424 —0.3698 —0.1955 —3.7532 —3.1087 —4.6552
Percentage 0.64% 4.25% 0.17% 0.99% 0.80% 14.70% 3.21% 7.89%
95% Confidence —0.74 -9.86 -1.20 —6.74 —0.99 —0.24 —3.50 —6.32
interval

1.16 6.03 1.28 6.87 1.38 7.69 9.72 13.77

Note: 1. The mean values are the average of the daily figures in the monitored period (60 days). 2. The values of the simulated system are
the average of 50 replications and the figures in brackets are the standard deviation.
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studies, they were modelled separately as Model 1
and Model 2 corresponding to Case 1 and Case 2,
respectively. The simulation of the manufacturing
process in Model 1 is shown in Fig. 2 and the
information and the materials flows in Model 2 are
shown in Fig. 3.

Although the simulation models were built to
reflect as much of the detail found in the structural
and operational elements of the chain as possible,
some differences cannot be avoided. When simulat-
ing customer changes, for example, the model
generates variations on the pattern of demand using
a distribution similar to that observed. Combining
this variation with the original order may result in a
negative final request, which is of course inadmis-
sible and has to be corrected. However, the
correction skews the resulting distribution from
the actual. In consequence, it was necessary to
“tune” the model.

“Tuning” slightly changes the distribution para-
meters of inputs in the simulation so that the both
inputs and outputs are statistically similar. After the
simulated system of Case 1 is tuned, the daily

: Stop

Production

Control

J O com |

\ 4

Await
instructions

Creation . ~
of entity Production > Stock

A 4

Fig. 2. Modelling the production line in Case 1. An entity in the
model (Arena) represents a daily production batch.

Customer Return

Sales Accounts
Information
(Orders)
Engineering [*
Customer
Reimbursement Schedule
Internal
Production Remake
Materials Over-make

(PCBs) ,_T
est

Fig. 3. Modelling the flows in Case 2.

volumes at the different stages from the simulated
system and from the real system are compared in
Table 1. Table 1 shows that the mean values of the
initial plan, the actual delivery, and the actual
production were tuned to have a difference of less
than 1% with low standard deviation from those in
the real system. The mean of the average daily stock
in the simulation, as an output of the system, is also
very close to that in the real system, although the
standard deviation (shown in brackets) is relatively
high. The reason for the high standard deviation of
daily stock is that stock accumulates the effects of
disturbances in the period of test. This accumula-
tion causes the stock level to differ from one run to
the next. Statistical tests were also used for
validation of the simulation model. The difference
between the mean values was tested by a z-test and
the difference between the standard deviations by
an F-test. None of the items is rejected with a
significance level of 0.05. The 95% confidence
interval, as shown in Table 1, implies that the error
between the value of the real system and that of the
simulated lies within the interval with a probability
of 0.95. Therefore, it can be concluded that the two
systems are similar in both input information and
production behaviours.

Table 2 shows the data from the ‘“‘tuned”
simulated system in Case 2. Although two items
are statistically rejected, it can still be seen that the
mean values are very close.

A number of scenarios were generated by chan-
ging the input or internal uncertainty from the
tuned model above, referred to as ‘“‘Simulated
Current”. In Model 1, the first scenario, called
“Timely Information”, assumes that the manufac-
turer (customer) sends the Confirmed Request 1 day
earlier than in the current situation (immediately
despatch after received the order). In this scenario,
the manufacturer has more time to schedule the
demand. A second scenario, called “Better Adher-
ence’”’, assumes that the forecast more closely
reflects the actual demand both in terms of the
average level and in the deviation about the mean.
A third scenario, “Eliminated Uncertainty”, elim-
inates all uncertainties in customer demand, in raw
materials supply, and in production.

In Model 2, variations are considered in the
demand, the overload, and the failure in produc-
tion. The scenarios, apart from *“Simulated Cur-
rent”, are “Increased Demand”, ‘Halved
Overload”, “Halved Failure”, “halved both failure
rate and overload” (Halved F&O), “Eliminating
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Table 2
Comparison between the real and simulated systems in Case 2
Test Items Request Loaded Finished Delivered ~ Scrap Stock Price Required  Production
Qty Qty Qty Qty Qty Qty £ Qty days
t-test of Real 69.55 89.68 74.40 62.77 15.28 11.63 113.10 2733 20.13
mean values
Simulated 71.10 88.81 73.22 61.95 15.51 11.19 11242 2678 19.90
Lower limit ~ —3.37 —2.44 —1.56 —-1.63 -1.19 0.07 -1.75  0.14 —0.03
Upper limit ~ 2.13 4.17 391 3.28 0.73 0.80 3.11 0.96 0.50
Test results J X J X
Real 151.53 175.03 157.72 141.37 55.33 37.82 25035  22.64 18.22
F-test of Simulated 154.51 180.43 144.15 124.84 74.39 29.55 221.01 2179 19.71
standard
diviations
Lower limit  0.73 0.73 0.82 0.85 0.56 0.96 0.85 0.7770 0.6910
Upper limit ~ 1.38 1.36 1.54 1.59 1.04 1.80 1.59 1.4586 1.2972
Test results J J J J J J J J J
Overload”, “Eliminating Failures”, and eliminating 5.0 1376
both failure and overload (“Eliminating F&QO™). 4354 ™
4.0
. . . 3203  3.119
4. Experimental results and discussion 304
4.1. Complexity of the simulated systems 2.0 -
Operational complexity is calculated in the Excel 1.0 1
model. In Case 1, two types of complexity were 0.0
studied, referred to as flow complexity and stock Demand Stock
complexity. The flow complexity is the information

generated by the variation between the initial and
the actual demand. The flow complexity can be
viewed as the complexity input from the customer.
The stock complexity is the information in the
difference between the scheduled stock and actual
stock. The stock complexity reflects the complexity
of the system (Frizelle and Suhov, 2001). The flow
complexity index and the stock complexity index
calculated from the real data and from the data
obtained by simulation are shown in Fig. 4. The
complexity indices obtained from simulation are the
averages of 50 replications of running the model.
The differences between the real values and the
simulated averages are less than 6%. The standard
deviation of the flow complexity indices and the
standard deviation of the stock complexity indices
are also drawn in the figure by the short bars above
and below the average.

In Case 2, the operational complexity indices
between three interfaces were calculated, both in the
“tuned” system and the real system. These are the
complexity indices between required quantities and
produced quantities, between produced quantities

Fig. 4. Complexity indices in Case 1: real compared with
simulated.

25
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1.5 1 104 131
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Fig. 5. Complexity indices in Case 2: real compared with
simulated.

and despatched (allocated) quantities, and between
despatched quantities and requested quantities. The
values of the complexity indices are illustrated in
Fig. 5. The largest difference between the values of
the real and the simulated indices is less than 12%.
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The coincidence of the complexity indices be-
tween the real and the simulated systems shows that
the operational complexity index does not rely on a
certain set of data and thus it is a generic measure.
In similar systems with the same categorisation of
states, the complexity indices measured should be
the same or close.

4.2. Complexity and costs

Fig. 6 shows the results of the comparison
between the costs and the complexity indices
obtained from the simulation under the differing
scenarios created in Case 1. The figure shows that
there is close coincidence between the complexity
indices and the operational costs under these
scenarios. The simulation experiments also show

that when the customer sends timely information to
the supplier, the supplier has a better chance to
control the inventory and to fulfil the customer
demand. This results in the reduction of the
complexity and the costs. The experiments confirm
that the reduction or elimination of uncertainty will
improve the operational performance.

In the simulation of Case 2, the simulation results
for the costs and the operational complexity indices
are shown in Fig. 7. It can be seen that increased
number of orders (increased demand), which makes
costs (and sales) increase proportionally, does not
strongly affect the value of the complexity index.
When the initial overload is reduced, the defects in
production will cause the increase of remake and
thus cause the complexity index to increase. In the
scenarios with reduced overload, the costs are
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Fig. 6. Complexity indices and costs for four scenarios in Case 1. (The costs have been rescaled to preserve confidentiality.)
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Fig. 7. Complexity indices and costs for eight scenarios in Case 2. (The costs have been rescaled to preserve confidentiality.)
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reduced by reduction of the excess production
although remaking and delivery delay increase. In
Model 2, remaking is taken as an additional order
(internal remake order) as it was in the real world.
Since they are difficult to be calculated, the costs of
remaking production batches and the delivery delay
due to remake were thus not included. The cost
could be significant and there was a possibility of
loss of the customers (That is why the company had
an initial overload.). In this sense, the operational
complexity index provided a better measure to
address the problem. The extent of the increase will,
of course, be dictated by the specifics of the
situation. Therefore, it can be concluded that, in
this make-to-order case, the costs depends on their
own specifications and are not necessarily asso-
ciated with the complexity indices.

This finding for Case 2 is unsurprising and in line
with the predictions made above. Thus, operational
complexity’s stress on queues emphasises inventory
costs of supply chains. In this particular case, the
need to make specifically to order means a near
absence of stock in the chain.

The demand pattern and the complexity index in
Case 1 shows that the bullwhip effect took place in
this supply chain as the demand for detergent by
final customers should be smooth in average
(although there could be a seasonal fluctuation).
Thus, it can be concluded that the complexity is
endogenous which is possibly reduced by manage-
ment of complexity and the operating costs could be
reduced. The simulation confirmed this point. The
company realised from this study that prompt
information sending to its supplier could benefit
not only the supplier but also itself to get in time
what needed. However, in practice, manufacturers
often send their request when every thing is
confirmed and settled and overlook the importance
of prompt information.

In case 2, the management also overlooked the
endogenous complexity caused by the process
capability as the product quality is finally achieved
by overproduction and inspection process. The
endogenous complexity could cost the company in
sales price up to 20% of revenue.

5. Conclusions

The investigation on the relationship between
operational complexity and its costs has been
carried out through a theoretical queuing model
and the simulation of two types of industrial supply

chain. It has shown that both the queuing model
and the simulation support the first question posed
at the start of the paper; that operational complex-
ity is indeed associated with the operational costs of
running a supply chain. Moreover, these costs can
be apportioned between those associated with the
structure of the chain and those generated by
departures from what was planned.

However, a second question was also asked; can a
relationship be adduced between costs and the
operational complexity index? More specifically,
will a reduction in the index lead to a reduction in
costs? It was clear from the fieldwork, supported by
the simulations, that a clear relationship existed in
the make-to-stock case study. By contrast no such
relationship could be inferred in the make-to-order
case.

Closer examination suggests that the second
conclusion needs to be clarified. What was estab-
lished is that inventories generated through devia-
tion from schedule, do not fall with a reduction in
the index. This is hardly surprising as no policy
inventories should exist in a make to order
environment. Indeed this finding was predicted.

It raises the question, however, about why no
attempt was made to quantify the costs of the
structural element of operational complexity, nor to
calculate the corresponding indices. After all,
financial figures can be gleaned from company
budgets. Moreover one would expect policy stock to
represent a far higher investment than inventory
fluctuations arising from operational complexity.
Indeed the question was a major topic of discussion
with the industrial sponsors. The answer is that the
second research goal was to see if the entropy index
varied with costs. A budget represents a single data
point. To generate further points would have
required mining data from earlier budgets. Apart
from the fact that such an enquiry would have taken
the work beyond the scope of the project, there was
no guarantee that the relevant entropy values could
have been calculated.

Even with this qualification, the literature shows
that operational complexity is not the only type of
complexity in a supply chain. Were it possible to
ascribe a cost to all of the complexities cited, then
they might indeed reduce with lower levels of overall
complexity. For example, to be agile usually
requires holding spare manufacturing capacity. This
usually includes a fixed element of structural cost
that might be reduced by simplifying the chain, as
reducing variety would free up capacity.
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The research does show that operational com-
plexity is a major source of costs. It should therefore
be of major concern to a manufacturing enterprise
and deserves more attention. The work has also
shown that the operational complexity index
defined by Frizelle and Woodcock (1995) is a
generic measure, i.e. similar systems will have close
values of the index. The index provides another
dimension in performance measurement of a man-
ufacturing enterprise or a supply chain. The work
has developed a way to ““tune” simulation studies by
comparing entropy values taken from the field to
those calculated for the simulation model. Finally,
this study confirms, from a new standpoint, that
further/shared information can reduce the variety of
non-tolerated states and results in the reduction of
costs.

Many questions remain. The most obvious is if
cost can be used as a measure of complexity in a
build-to-order system? A second is. would the same
results be replicated with different companies? The
findings in this paper are limited by the number of
industrial cases undertaken. A third is what impact
other forms of complexity have on costs and is it
possible to generate an exhaustive list. There is
scope for further investigations into these matters
and using the complexity indices as a diagnostic tool
is also a direction for future research.
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